Σ

2 0

Global Precipitation Measurement (GPM)

NASA GPM Ground Validation Development Status

November 6, 2006

Mathew Schwaller GPM Formulation Project Ground Validation Manager mathew.r.schwaller@nasa.gov

3 Scales of Measurement for GPM GV

Field Campaigns

- From individual hydrometeors to radar/aircraft ensembles
- Several mm to 150km radius by 10 km high

Validation Network

- Measurements on the order of radar networks
- Individual radars with radii of 150-300km; networks with large regional to continental coverage

Satellite Simulation

- Integrate measurements with radiative transfer models across all scales of GV measurement: from the earth-surface to top of the atmosphere
- Possibility of global expansion

The 3 Elements of GPM GV System

Field campaigns

- Goal: physical validation through precipitation and hydrological process studies
- Planned to be operational 6 months prior to launch
- Focused, in-depth study of atmospheric and land-surface variables that contribute to precipitation estimation, forecasting, and hydrological applications

Validation Network

- Goal: statistical validation of GPM/DPR raw and attenuation-corrected reflectivity
- Leverages US national infrastructure of weather radars and rain gauges
- Matches TRMM/GPM PR/DPR observations to ground radars

Satellite simulation modeling

- Goal: physical validation of GPM retrieval algorithms
- Pre-launch: simulate GMI high-frequency and DPR Ka-band observations
- Coupled system approach: land-surface through radiative transfer
- Post-launch: validate the physical assumptions of GPM precipitation algorithms
- Prototype development of these GV elements is now underway...

Ground Validation Field Campaigns

- Planned as a series of Extended & Intensive Observation Periods (EOPs and IOPs)
- Focus on precipitation process studies and integrated science
- Study site locations leverage off of operational agency sites, candidates include:
 - DOE CART/SGP
 - NOAA's Hydrometeorological Testbed
 - Other cooperative field operations are under consideration

Winter 2006-2007 Field Campaign Prototype

- GPM and PMM Science Team is participating in the Canadian CloudSat/CALIPSO Validation Programme (C3VP)
 - Per suggestions of GPM GV Science Panel: GPM/PMM goal for early tests and evaluation of snow and mixed-phase retrieval algorithms for GPM GMI and DPR
- C3VP is organized by the Meteorological Service of Canada, with major contributions from
 - NASA/JPL CloudSat Project
 - DoD Center for Geosciences/Atmospheric Research at Colorado State University (Cloud Layer Experiment-10, CLEX-10)
 - McGill and other universities
- C3VP has four Intensive Operations Periods (IOPs) with instrumented aircraft
 - IOP-1: October 31 November 9
 - IOP-2: November 30 December 11
 - IOP-3: January 17 January 28
 - IOP-4: February 18 March 1
 - Ground observations now underway ending March, 2007

C3VP Operations at "CARE"

Centre for Atmospheric Research Experiments (CARE) site located ~70km north of Toronto

Instrument array including radars, disdrometers, gauges, radiometers, radiosonde launches

King City C-Band Radar ~30km from CARE (10 minute scan cycle)

Campaigns include Convair C580 aircraft flights during IOPs and Regional Atmospheric Modeling System (RAMS) output

NASA's Contributions to C3VP

- Advanced Multi-Frequency Radar (AMFR)
 - University of Massachusetts (Paul Siqueira and Nino Majurec)
 - High resolution, 3-frequency (Ka, Ku, W), truckmounted
 - Deployed during C3VP IOP-3 (January 2007)
- 2-Dimensional Video Disdrometer (2DVD)
 - Colorado State University (V.N. Bringi)
 - Measures hydrometeor concentrations, sizes (equivalent diameter), shapes, and fall speeds
 - Deployed during C3VP IOP-3 (January 2007)
- Two Parsivel Laser Disdrometers
 - NASA/Goddard Space Flight Center Science & Exploration Directorate (Codes 613 & 614)
 - Measures hydrometeor numbers, sizes (maximum width), and fall speeds
 - Deployed during majority of the winter 2006-2007 at CARE
- Deployments supported by NASA's Precipitation Measuring Mission Science Team and by the GPM Project

More C3VP Instrumentation

Ground Instrumentation at CARE

Convair aircraft instrumentation

Affiliation	Sensor / System	Measurement
NASA/JPL	W-band polarimetric radar	Cloud phase, particle type, pretip rate
UMa ss	Adv Multi-Freq Radar (U, Ka, Ku-band)	Cloud phase, particle type, precip rate
EC	Ceiliometer	Geometric cloud profile
McGill	X-band VertiX Doppler radar	Cloud detecton, particle type
McGill	Video disdrometer	Precip fall velocity and shape, DSD
CSU	2D video disdrometer	Precip fall velocity and shape, DSD
NASA/GSFC	Parsivel laser disdrometer	Predp rate, pr e ip type, DSD
EC	POSS	Precip rate, pr e ip type, DSD
EC	Hot plate	Predp rate
EC	Geonor predipitation gauge	Predp rate
EC	Visibility meter	Visibility, preænt weather indicator
EC	10m me tower	P, T, RH, wind
EC	TP/WVP-300@profiling radiometer	LWP
NASA/GRC	89 & 16 GHz profiling radiometer	LWP w/ sensitivity toice particles
EC	915MHz wind profiler w/ RASS	Wind profile, turbulence, temp profile
EC	Vaisalaradiosonde system	P, T, RH, wind profiles
EC	Broadband radiometers	Pyranometer & pyrgeometer
Penn State	Dual-radiometer package	Cloud optical depth
McGill	Ground particle photography	Particle imaging & sample collection

Cloud Spectrometer (under wing pylons)	Other Instrumentation (1997)
PMS PCASP-100X probe (031.0µm)	AERI AL (AERosol Imaging Airborne Lidar)
PMS FSSP-300X probe (0-250µm)	Ka band radar (non-polarimetric, nondoppler)
2 PMS FSSP probes (2-47 μ m, 5-95 μ m)	NRC X -band/W-band polarimetricradar
PM S 2D2C probe (2580Q/m)	Broadband Visible and Infrafred Radiometers
SPEC 2D-S probe (10128Q/m)	Extinction probe
PMS 2DC-grey probe (1596Q/m)	Ice Nucleus Counter (CSU)
DMT CIP probe (12 76&m)	Rosemount Ice detector
PM S 2D-P probe (200-6400 μm)	TAMDAR (wi nds, turbulence, temperature relative
	humidity, icing)
SPEC HVPS probe (2 0 -25 0 0 <i>µ</i> m)	

Ground Validation Network

- Goal: Identify and resolve significant discrepancies between the US national network and satellite estimates
- Use available national resources including radars and rain gauge networks
- Identify systematic discrepancies in GPM products.
- Additionally:
 - Understand (and minimize) the errors associated with the geometry and timing of joint satellite and ground observations
 - Quantify the bias and errors contributed by individual ground and space-based instruments
 - Contribute to an error model of precipitation measurements
 - Assess the first order errors of satellite rainfall retrievals over land

Validation Network Prototype

- Prototype just getting started with 20 NEXRAD sites in southeast US
- Success criteria

Pre-launch

- Validate PR-to-NEXRAD radar reflectivity calibration and PR attenuation correction (based on approach by Bolen & Chandrasekar)
- Experimental product for comparison of NEXRAD and PR estimates of rain rate and D₀ (median drop diameter)
- Validate scalability to all NEXRADs and other radars

Post-launch

 Pre-launch working products applied to DPR Ka / Ku bands and to GMI

L. Liao & R. Meneghini

GV Satellite Simulator Model

Goals & Objectives

- Validation/verification of the physical basis for the PMM algorithms
- Assess sources of error in comparing ground measurements with PMM data products due to: sample volume mismatch, space/time offsets, and different instrument/retrieval methods

Implementation Approach

- A high-resolution CRM generates hydrometeor fields and other data (e.g., aerosols, temperature, humidity,...) needed to run the forward model
- DPR simulator calculates radar reflectivity at range gates through the model atmosphere
- GMI simulator calculates TOA radiances
- DRP and GMI algorithms generate retrievals of R
- DPR algorithm also generates retrieval of Do
- Spacecraft R and Do are compared (initially) to ground instrument simulations and to field campaign ground measurements
- Coupled CRM/Land-Surface Models to address water cycle

GV Satellite Simulator Demonstration

- Proof-of-concept simulation of ground, airborne and satellite instruments
 - A high-resolution CRM generates hydrometeor fields and other model parameters needed to run the forward model
 - DPR simulator calculates radar reflectivity at range gates through the model atmosphere
 - GMI simulator calculates radiance fields, including TOA radiance; extended to simulate airborne radiometer and radar observations
- Future development includes retrievals of R and Do, coordination with EarthCARE simulator

DPR Ku-band attenuation corrected

Ground X-band attenuation corrected

(R. Meneghini)

W. Olson and M. Grecu

Last Slide: Sketch of GPM GV Development Plan

- Science Advisory Process
 - Advisory panel provides recommendations on GPM GV scope & direction
- System Documentation & Reviews
 - Ground Validation System design documents available in draft form
 - > Requirements, operations concepts and system architecture to be completed by Mission PDR (September 2008)
 - > Mission CDR scheduled for September 2009
- Risk Reduction Prototypes
 - Field campaign prototype (C3VP)
 - > Campaign had just started, will conclude in March 2007
 - > Data will be available to the PMM Science Team and other C3VP team members; all data publicly available 3 years after campaign
 - Validation network prototype
 - > Corresponding NEXRAD and PR subsets expected to be available on a public web site in the new year; comparison products to be added over time
 - Satellite simulator prototype planned but not yet scheduled
- GV System Implementation
 - GPM GVS will be fully operational 6 months prior to GPM launch